(Toniolo, Bonora, Bavoso, Benedetti, Di Blasio, Pavone & Pedone, 1983; Prasad & Balaram, 1984).

Both molecules A and B show the piperidine ring in a chair (${}^{4}C_{1}$) conformation and the —CONH substituent in the axial disposition, as expected from calculations (Toniolo *et al.*, 1989). The urethane and amide groups have the *trans* orientation, but the former is markedly out-of-plane. Interestingly, the tripeptide analogue Z-Aib-L-Pro-Aib-OMe is also folded in the crystal state, showing the same type of β -bend (distorted type-I) (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo, Bonora & Crisma, 1983).

In the crystal packing intermolecular N—H… O=C hydrogen bonds occur, involving the urethane Aib(1) N—H as donor and the peptide Pip(2) C=O as acceptor. Alternating A and B molecules form infinite chains along a. The N(1) atom of an A molecule is hydrogen bonded to the O(4') atom of an enantiomeric B molecule $(x, \frac{1}{2} - y, \frac{1}{2} + z)$, while the N(1') atom of a B molecule is hydrogen bonded to the O(4) atom of an enantiomeric A molecule $(x + 1, \frac{1}{2} - y, z - \frac{1}{2})$. The corresponding N…O distances are 2.89 and 2.88 Å.

References

BARDI, R., PIAZZESI, A. M., CRISMA, M., TONIOLO, C., SUKUMAR, M. & BALARAM, P. (1992). Z. Kristallogr. In the press.

- BENEDETTI, E. (1982). Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 6, edited by B. WEINSTEIN, pp. 105–184. New York: Dekker.
- BENEDETTI, E., BAVOSO, A., DI BLASIO, B., PAVONE, V., PEDONE, C., TONIOLO, C., BONORA, G. M. & CRISMA, M. (1983). Int. J. Pept. Protein Res. 22, 385–397.
- BENEDETTI, E., PEDONE, C., TONIOLO, C., NÉMETHY, G., POTTLE, M. S. & SCHERAGA, H. A. (1980). Int. J. Pept. Protein Res. 16, 156–172.
- BULLOUGH, D. A., JACKSON, C. G., HENDERSON, P. J. F., COTTEE, F. H., BEECHEY, R. B. & LINNETT, P. E. (1982). *Biochem. Int.* 4, 543–549.
- DUNITZ, J. D. & STRICKLER, P. (1968). Structural Chemistry and Molecular Biology, edited by A. RICH & N. DAVIDSON, pp. 595–602. San Francisco: Freeman.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PRASAD, B. V. V. & BALARAM, P. (1984). CRC Crit. Rev. Biochem. 16, 307-348.
- RAE, J. D., RASTON, C. L. & WHITE, A. H. (1980). Aust. J. Chem. 33, 215–219.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SUKUMAR, M. (1987). PhD Thesis. Indian Institute of Science, Bangalore, India.
- TONIOLO, C., BARDI, R., PIAZZESI, A. M., CRISMA, M., BALARAM, P., SUKUMAR, M. & PAUL, P. K. C. (1989). *Peptides* 1988, edited by G. JUNG & E. BAYER, pp. 477–479. Berlin: de Gruyter.
- TONIOLO, C., BONORA, G. M., BAVOSO, A., BENEDETTI, E., DI BLASIO, B., PAVONE, V. & PEDONE, C. (1983). *Biopolymers*, 22, 205–215.
- Valle, G., CRISMA, M., FORMAGGIO, F., TONIOLO, C. & JUNG, G. (1987). Justus Liebigs Ann. Chem. pp. 1055–1060.

SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors [Acta Cryst. (1985). C41, 1–4].

Acta Cryst. (1992). C48, 1648-1650

Structure of Tetrachlorophosphonium Hexafluoroantimonate

BY HANS PREUT, DIRK LENNHOFF AND ROLF MINKWITZ

Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund, Germany

(Received 22 November 1991; accepted 24 January 1992)

Abstract. [PCl₄][SbF₆], $M_r = 408.526$, tetragonal, P4/n, a = 8.568 (3), c = 6.531 (5) Å, V = 479.4 Å³, Z = 2, $D_x = 2.830$ Mg m⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 4.22$ mm⁻¹, F(000) = 376, T = 169 K, final R = 0.059 for 425 unique observed [$F \ge 4.0\sigma(F)$] diffractometer data. The unit cell contains two [PCl₄]⁺

cations [P—Cl 1.929 (2) Å (×4), Cl—P—Cl 109.15 (8) (×2), 109.63 (8)° (×4)] and two [SbF₆]⁻ anions [Sb—F 1.864 (5) (×4), 1.924 (9) (×1), 1.912 (8) Å (×1), F—Sb—F 90.0 or 180.0°]. The anion resides on a fourfold axis and the cation on a fourfold inversion axis.

0108-2701/92/091648-03\$06.00 © 1992 International Union of Crystallography

Experimental. Single crystals were prepared from a saturated solution of PCl_4^+ .SbF₆⁻ in anhydrous HF at 243 K in a KEL-F reactor equipped with a stainless-steel valve. Over a period of 18 d the HF was removed stepwise at this temperature until crystallization began. The solution was then decanted and the crystals dried by pumping off the HF in a high vacuum. A crystal of approximate size $0.18 \times 0.36 \times 0.42$ mm was used. The crystal was sealed in a Lindemann-glass capillary under inert atmosphere. D_m was not determined. Intensity data were collected using $\omega/2\theta$ scans with variable scan speed 1.5–15.0° min⁻¹ in θ and scan width 1.2° + dispersion. A Nicolet R3m/V diffractometer with graphite-monochromated Mo $K\alpha$ radiation and equipped with a liquid-N₂ LT-1 low-temperature device was used for preliminary examinations and data collection. The lattice parameters were determined from a symmetry-constrained leastsquares fit of the angular settings for 25 reflections with $2\theta_{\text{max}} = 28.8^{\circ}$. ω scans of low-order reflections along the three crystal axes showed acceptable mosaicity. Six standard reflections (400, 040, 002, $\overline{400}$, $0\overline{40}$, $00\overline{2}$) were recorded every 300 reflections and showed only random deviations during 14.5 h of X-ray exposure. 535 reflections with $2.0 \le 2\theta \le 50.0^{\circ}$ (3378 accessible), $0 \le h \le 11$, $0 \le k \le 11$, $0 \le l \le 8$ were measured. The data were corrected for Lorentz-polarization but not for absorption effects and averaged ($R_{int} = 0.061$) to 431 unique reflections, 425 of which had $F \ge 4.0\sigma(F)$. The systematic absences (hk0) h + k = 2n + 1 and the diffraction symmetry conform to space group P4/n. The structure was solved via a Patterson function and $\Delta \rho$ maps. It was refined (on F) using full-matrix least squares with anisotropic displacement parameters for all atoms. 30 parameters were refined. Weights $w^{-1} = \sigma^2(F) + 0.0037F^2$ led to a featureless analysis of variance in terms of $\sin\theta$ and F_{o} . The refinement converged to S = 2.48, R = 0.059, wR =0.083, $(\Delta/\sigma)_{\rm max} = 0.009$ (no extinction correction). No explanation can be given for the rather high Rvalues. The correctness of the space-group choice was checked by using MISSYM (Le Page, 1987). The largest peaks in the final $\Delta \rho$ map were ± 1.6 (5) e Å⁻³ (near Sb). Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The programs used were PARST (Nardelli, 1983), SHELX76 (Sheldrick, 1976), SHELXTL-Plus (Sheldrick, 1987), PLATON (Spek, 1982), SADIAN (Baur & Wenninger, 1969), and MISSYM (Le Page, 1987). The anion and cation and the numbering scheme are shown in Fig. 1 and a stereoscopic view of the unit-cell contents is presented in Fig. 2. Positional parameters and the equivalent values of the anisotropic displacement

parameters are given in Table 1.* Bond lengths and bond angles are given in Table 2.

Related literature. Several crystals containing a PCl_4^+ cation have already been investigated and their crystal structures have been published: PCl₄⁺.TeCl₅⁻ (Collins & Webster, 1972), PCl₄⁺.TeCl₅⁻ (Krebs, Buss & Berger, 1973); PCl_4^+ . ICl_2^- (Zelezny & Baenziger, PCl_4^+ . $Ti_2Cl_9^-$ 1952); and $2PCl_4^+.Ti_2Cl_{10}^{2-}$ (Kistenmacher & Stucky, 1971); PCl₄⁺.NbCl₆⁻ and PCl₄⁺.TaCl₆⁻ (Preiss, 1971*c*); PCl_4^+ .Fe Cl_4^- (Kistenmacher & Stucky, 1968); PCl₄⁺.VCl₅⁻ (Ziegler, Nuber, Weidenhammer & Hoch, 1977); PCl₄⁺.UCl₆⁻ (Taylor & Waugh, 1983); $3PCl_4^+.Sn_2Cl_6^{2-}.PCl_6^-$, PCl₄⁺.Sn₂Cl₁₀²⁻, PCl₄⁺.SnCl₅⁻ (Shamir, Luski, Bino, Cohen & Gibson, 1985); PCl₄⁺.AuCl₄⁻ (Erdbrügger, Jones, Schelbach, Schwarzmann & Sheldrick, 1987);

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55078 (4 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BX0585]

Fig. 1. General view (Sheldrick, 1987) of the cation and the anion, with the atom numbering [symmetry code at Cl: (a) 0.5 - x, 1.5 - y, z; (b) -0.5 + y, 1 - x, 1 - z; (c) 1 - y, 0.5 + x, 1 - z; and at F: (a) 1.5 - x, 1.5 - y, z; (b) 0.5 - y, x, z; (c) 1.5 - x, z]. Anisotropic ellipsoids represent 50% probability boundaries.

Fig. 2. Stereoscopic view (SCHAKAL; Keller, 1986) of the unit cell.

Table 1. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2 \times 10^4$)

	$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$			
	x	у	z	U_{eq}
Sb(1)	0.75	0.75	0.8461 (1)	206
Cl(1)	0.0719 (2)	0.7059 (2)	0.3288 (3)	361
P(1)	0.25	0.75	0.5	241
F(1)	0.0523 (6)	0.6698 (7)	0.8461 (8)	485
F(2)	0.75	0.75	0.552 (1)	566

0.75

Table 2. Bond distances (Å) and bond angles (°)

1.139 (1)

458

Anion		Cation	
Sb(1)-F(1)	1.864 (5) × 4	P(1) - Cl(1)	1.929 (2) × 4
Sb(1)-F(2)	1.924 (9) × 1		
Sb(1)-F(3)	1.912 (8) × 1	Cl—P—Cl	109.15 (8) × 2
		Cl—P—Cl	109.63 (8) × 4
F—Sb—F	90.0 or 180.0		

 PCl_4^+ .(Sb,Nb,Ta) Cl_6^- .As Cl_3 (Preiss & Reich, 1971); PCl_4^+ . ICl_4^- (Shamir, Schneider, Bino & Cohen, 1986); PCl₄⁺.PCl₆⁻ (Clark, Powell & Wells, 1942). The investigated crystal of the title compound is isomorphous with the crystals of the compounds AsCl₄⁺.AsF₆⁻ (Preiss, 1971*a*; Minkwitz, Nowicki & Borrmann, 1991) and PCl_4^+ . PCl_6^- (Preiss, 1971b).

References

- BAUR, W. H. & WENNINGER, G. (1969). SADIAN. Program for calculation of atomic distances and angles in crystal structures. Univ. of Illinois, Chicago, USA.
- CLARK, D., POWELL, H. M. & WELLS, A. F. (1942). J. Chem. Soc. pp. 642-654.

- COLLINS, P. H. & WEBSTER, M. (1972). Acta Cryst. B28, 1260-1264.
- ERDBRÜGGER, C. F., JONES, P. G., SCHELBACH, R., SCHWARZMANN, E. & SHELDRICK, G. M. (1987). Acta Cryst. C43, 1857-1859.
- KELLER, E. (1986). SCHAKAL. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
- KISTENMACHER, T. J. & STUCKY, G. D. (1968). Inorg. Chem. 7, 2150-2155.
- KISTENMACHER, T. J. & STUCKY, G. D. (1971). Inorg. Chem. 10, 122-132.
- KREBS, B., BUSS, B. & BERGER, W. (1973). Z. Anorg. Allg. Chem. 397, 1-15.
- LE PAGE, Y. (1987). J. Appl. Cryst. 20, 264-269.
- MINKWITZ, R., NOWICKI, J. & BORRMANN, H. (1991). Z. Anorg. Allg. Chem. 596, 93-98.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- PREISS, H. (1971a). Z. Anorg. Allg. Chem. 380, 45-50.
- PREISS, H. (1971b). Z. Anorg. Allg. Chem. 380, 51-55. PREISS, H. (1971c). Z. Anorg. Allg. Chem. 380, 56-64.
- PREISS, H. & REICH, P. (1971). Krist. Tech. 6, 375-380.
- SHAMIR, J., LUSKI, S., BINO, A., COHEN, S. & GIBSON, D. (1985). Inorg. Chem. 24, 2301-2309.
- SHAMIR, J., SCHNEIDER, A., BINO, A. & COHEN, S. (1986). Inorg. Chim. Acta, 114, 35-39.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE. Oxford: Clarendon Press.
- TAYLOR, J. C. & WAUGH, A. B. (1983). Polyhedron, 2, 211-216.
- ZELEZNY, W. F. & BAENZIGER, N. C. (1952). J. Am. Chem. Soc. 74, 6151-6152.
- ZIEGLER, M. L., NUBER, B., WEIDENHAMMER, K. & HOCH, G. (1977). Z. Naturforsch. Teil B, 32, 18-21.

Acta Cryst. (1992). C48, 1650-1652

Structure of Aluminium Disodium Trihydrogenbis(diphosphate)

BY S. GALÍ

Departament de Cristallografía, Universitat de Barcelona, Martí i Franquès s.n., Barcelona 08028, Catalonia, Spain

A. CÁRDENAS*

Departamento de Física, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile

AND K. BYRAPPA AND G. S. GOPALAKRISHNA

Mineralogical Institute, University of Mysore, Manasagangotri, Mysore 570006, India

(Received 25 March 1991; accepted 13 January 1992)

Abstract. Na₂AlH₃(P₂O₇)₂, $M_r = 423.9$, triclinic, $P\overline{1}$, a = 8.311 (4), b = 7.363 (4), c = 4.902 (3) Å, $\alpha =$

* Present address: Departament de Cristallografía, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain.

99.67 (2), $\beta = 81.77$ (2), $\gamma = 114.48$ (1)°, 268.2 (4) Å³, Z = 1, $D_x = 2.624$ g cm⁻³, λ (Mo $K\alpha$) = 0.7107 Å, $\mu = 9.31$ cm⁻¹, F(000) = 210, T = 293 K, R = 0.032 for 761 independent observed reflections. The Al octahedron shares two opposite edges with

0108-2701/92/091650-03\$06.00

© 1992 International Union of Crystallography

F(3)

0.75